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Metabolite compositions of individual cells in a cell popula-
tion differ due to gene transcription, protein expression,

environmental perturbations, infection, etc.1-3 Flow cytometry
in combination with, e.g., immunofluorescent labeling of proteins
has provided insight into the heterogeneity of cells within a cell
population.4,5 However, information related to the localization of
cells in tissue is lost when these cytometry methods are used.
Furthermore, once the number of cells becomes small, the
analysis of the sorted cell populations becomes challenging.
For example, the isolation of RNA from K-562 leukemia cells
is increasingly difficult as the population size, n, reaches low
(5 000 < n < 10 000) and very low (500 < n < 1 000) levels.6

Recently, for a few selected metabolites, matrix-assisted laser
desorption ionization (MALDI) mass spectrometry (MS) has also
been used to study metabolic heterogeneity in microbial cultures.7

Chemical imaging and analysis of cell populations at atmo-
spheric pressure by MS has broad applicability in biomedical
research as well as potential for clinical diagnostics. Imaging MS
has been successful at mapping proteins, lipids, and metabolites in
biological tissues withmolecular specificity and high sensitivity.8-10

Matrix-assisted laser desorption ionization (MALDI) MS has

been utilized to provide spatial distribution of neuropeptides in
single neurons and analyze cell populations isolated by laser
capture microdissection.11,12 Because of its higher spatial resolu-
tion, secondary ion mass spectrometry (SIMS) has been utilized
to map chemicals at a subcellular resolution in brain tissues and
membranes between fusing Tetrahymena.13,14 SIMS imaging has
also been utilized to classify cancer cell lines based on statistical
data reduction of their mass spectra.15 Matrix-free platforms,
such as laser desorption ionization (LDI) with colloidal silver and
ultraviolet LDI, have been utilized to provide MS imaging of
cholesterol in individual glial cells and the distribution of
secondary metabolites in Arabidopsis thaliana, respectively.16,17

In comparison to the aforementioned vacuum based methods,
ambient ionization techniques offer the possibility of direct
chemical mapping within biomedical specimens in their native
states.18-20
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ABSTRACT:Molecular imaging bymass spectrometry (MS) is
emerging as a tool to determine the distribution of proteins,
lipids, andmetabolites in tissues. The existing imaging methods,
however, mostly rely on predefined rectangular grids for
sampling that ignore the natural cellular organization of the
tissue. Here we demonstrate that laser ablation electrospray
ionization (LAESI) MS can be utilized for in situ cell-by-cell
imaging of plant tissues. The cell-by-cell molecular image of the
metabolite cyanidin, the ion responsible for purple pigmenta-
tion in onion (Allium cepa) epidermal cells, correlated well with
the color of cells in the tissue. Chemical imaging using single-cells as voxels reflects the spatial distribution of biochemical differences
within a tissue without the distortion stemming from sampling multiple cells within the laser focal spot. Microsampling by laser
ablation also has the benefit of enabling the analysis of very small cell populations for biochemical heterogeneity. For example, with a
∼30μmablation spot wewere able to analyze 3-4 achlorophyllous cells within an oil gland on a sour orange (Citrus aurantium) leaf.
To explore cell-to-cell variations within and between tissues, multivariate statistical analysis on LAESI-MS data from epidermal cells
of an A. cepa bulb and a C. aurantium leaf and from human buccal epithelial cell populations was performed using the method of
orthogonal projections to latent structures discriminant analysis (OPLS-DA). The OPLS-DA analysis of mass spectra, containing
over 300 peaks each, provided guidance in identifying a small number of metabolites most responsible for the variance between the
cell populations. These metabolites can be viewed as promising candidates for biomarkers that, however, require further verification.
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Mapping of metabolites by MS in plant tissues at atmospheric
pressure (AP) was demonstrated by AP IR-MALDI.21,22 Other
atmospheric pressure ionization sources, such as desorption
electrospray ionization (DESI) and probe electrospray ionization
(PESI), were applied for the molecular imaging of animal tissue
sections.23-25 The ability of laser ablation electrospray ionization
(LAESI) MS to combine two-dimensional lateral imaging26 with
depth profiling27 to achieve three-dimensional cross-sectional
imaging28 was shown in studies of rat brain and plant tissues,
respectively.

In LAESI-MS, a mid-IR laser pulse of 2.94 μm wavelength
is strongly absorbed by the native water content of the cell
and tissue samples. The ensuing ablation ejects microscopic
volumes from the sample in the form of a plume.29-32 Particulates
in this ablated plume coalesce with the electrospray droplets and
become ionized. Similar mid-IR ablation and electrospray based
ionization techniques, such as IR laser-assisted desorption electro-
spray ionization (IR-LADESI), matrix-assisted laser desorption
electrospray ionization (MALDESI), and electrospray-assisted
laser desorption ionization (ELDI), have also been introduced
for direct ambient analysis by MS.33-35

Current imaging MS methods for the spatial mapping of
molecules in tissues rely on sampling that follows a rectangular
grid. The mismatch between a periodic rectangular sampling grid
and the quasi-periodic cellular pattern in a tissue inevitably
results in ablation spots overlapping adjacent cells. This results
in the averaging of mass spectrometric signal from multiple cells
leading to the loss of information on cell-to-cell compositional
variations. Analysis of metabolites in a single cell by LAESI-MS
can be performed by focusing the laser pulse through an etched
optical fiber tip.36-38 In a tissue, single cells are convenient voxels
for imaging because they define the natural distribution of biochem-
ical species.

Chemometric tools based on multivariate statistics can be
employed to evaluate the complex data generated in metabolo-
mics analysis.39-41 Principal component analysis (PCA), a classic
chemometric tool, simplifies the dimensionality of the data set by
reducing the multiple variables into new variables of fewer
dimensions by linear combinations.42 In the orthogonal projec-
tions to latent structures discriminant analysis (OPLS-DA)
approach, the uncorrelated variation between the statistical
variables is removed to better reveal systematic variations.43,44

In this contribution, we present a novel approach for imaging
MS at atmospheric pressure based on using single cells as the
imaging voxels. The feasibility of cell-by-cell tissue imaging MS is
demonstrated by analyzing individual cells in the Allium cepa
tissue by LAESI-MS. The utility of multivariate statistical meth-
ods based on OPLS-DA for the extraction of biochemically
distinguishing metabolites in small cell populations within the
image as well as in human buccal epithelial and citrus leaf cell
populations is also evaluated.

’EXPERIMENTAL SECTION

Single-Cell LAESI-MS. Ablation in single-cell LAESI-MS
analysis was produced by delivering mid-IR laser pulses through
a sharpened germanium oxide-based glass optical fiber tip as
described elsewhere and tabulated in Table S1 of the Supporting
Information.36-38 Briefly, a laser pulse with 5 ns pulse width and
2.94 μm wavelength was produced by a Nd:YAG laser driven
optical parametric oscillator (OPO) (Opolette 100, Opotek,
Carlsbad, CA). The laser pulses were coupled into the cleaved

end of a 450 μm core diameter GeO2-based fiber (Infrared Fiber
Systems, Silver Spring, MD) by a 50 mm focal length plano-
convex calcium fluoride lens (Infrared Optical Products, Farm-
ingdale, NY). The laser pulse energies before coupling to the
fiber were 0.55 ( 0.03 mJ. The cleaved end of the optical fiber
was held by a bare fiber chuck (BFC300, Siskiyou Corpora-
tion, Grants Pass, OR) and positioned with a five-axis translator
(BFT-5, Siskiyou Corporation, Grants Pass, OR). The other end
of the fiber was chemically etched to produce a sharpened tip by
dipping it into 1% HNO3 (v/v) solution for ∼15 min. The
etched tip was mounted on a micromanipulator (MN-151,
Narishige, Tokyo, Japan) and aligned over the cell of interest
at a 45� tip angle and∼30 μm from the surface. The etched tip of
the fiber delivered mid-IR laser pulses to the cell causing the
perforation of the cell wall and the ejection of the cell content
into the ablation plume. Ablations were carried out by aiming the
fiber tip at the geometric center of the cells. Delivering 20-50
laser pulses per cell ensured the sampling of a significant portion
of the cell content and resulted in consistent spectra. Neutral
particulates in the plume coalesced with highly charged droplets
from an electrospray. The electrospray was produced by pump-
ing 50% (v/v) aqueous methanol solution containing 0.1% (v/v)
acetic acid by a low noise syringe pump (Physio 22, Harvard
Apparatus, Holliston, MA) at 200 nL/min flow rate through a
tapered stainless steel emitter (i.d., 50 μm, MT320-50-5-5, New
Objective, Woburn, MA) and by applying high voltage (2.9-3.0
kV) generated by a regulated power supply (PS350, Stanford
Research Systems, Sunnyvale, CA) to it.45 The mass spectro-
meter orifice-to-emitter tip distance was 12 mm, and the orifice
axis-to-sample surface distance was also 12 mm. The charged
droplets in the spray seeded by molecules from the sample
produced corresponding positive ions that were analyzed by
an orthogonal acceleration time-of-flight mass spectrometer
(QTOF Premier, Waters Co., MA). The peaks in the mass
spectra were assigned to metabolites based on accurate mass
measurements, on matching isotope distribution patterns, on
database and literature information, and, in some cases, on
tandem MS measurements.
Microscopy. Visualization of the cells was required to select

and target them for the LAESI-MS analysis. Two home-built long
working distance microscopes were used for cell targeting and
for monitoring the distance between the fiber tip and the cell
surface. The former consisted of a 7� precision zoom optic
(Edmund Optics, Barrington, NJ), a 10� infinity-corrected long
working distance objective lens (MPlan Apo 10�, Mitutoyo Co.,
Kanagawa, Japan), and a CCD camera (Marlin F131, Allied
Vision Technologies, Stadtroda, Germany). A similar micro-
scope was utilized to maintain the ∼30 μm distance between
the fiber tip and the cell surface to achieve efficient ablation
without mechanically damaging the cells. This system consisted
of a long distance video microscope (InFocus Model KC,
Infinity, Boulder CO), a 5� infinity corrected objective lens
(M Plan Apo 5�, Mitutoyo Co., Kanagawa, Japan), and a CCD
camera (Marlin F131, Allied Vision Technologies, Stadtroda,
Germany).
Chemicals and Cells. HPLC grade methanol and water were

purchased from Acros Organics (Geel, Belgium), and glacial
acetic acid was obtained from Fluka (Munich, Germany) and
used without further purification. A monolayer of cells was
obtained from a purple cultivar of A. cepa bulbs purchased from
a local market (Washington, DC). A layer of bulb scales was
excised by a surgical scalpel into a strip. An intact layer of the
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inner epidermal tissue was peeled away and mounted on a glass
slide for LAESI-MS analysis. Human buccal mucosa epithelial
cells (cheek cells) were collected from a healthy male volunteer
with normal medical history by scraping the inside of the cheek
after rinsing the mouth with tap water. The scraped cells were
directly transferred to a clean microscope glass slide for LAESI-
MS analysis. Six sour orange (Citrus aurantium) saplings (45 cm
tall) were provided by the USDA laboratory inWeslaco, TX. The
trees were maintained in a greenhouse at GWU, where they were
watered twice a week with∼2 L of tap water and kept in natural
light while awaiting analysis. Citrus leaves were excised from
the plants and secured to glass slides with cellophane tape for
LAESI-MS analysis.
Imaging. A three-axis translation stage (LTA-HS, Newport

Corp., Irvine CA) was used to manually move the tissue sample
below the fiber tip. To maintain the geometry of the LAESI-MS
system, the imaging experiments were performed by moving the
sample and presenting a new cell for each analysis instead of
relocating the fiber tip. For each cell, ions were collected in 2 s
scans, corresponding to 20 laser pulses, from the approximate
center of the cell, to avoid damage to the adjacent cells. To
produce comparable spectra, 5 scans were averaged from each
cell. The dwell time between the analyses averaged 60 s, allowing
the operator to move the sample manually. The length of
the dwell time was sufficient to ensure that no cross talk occurred
between the single-cell samples. A scientific visualization pack-
age, Origin (Origin 7.0, OriginLab Co., Northampton, MA), was
used to produce the false color scale for the distributions of mass-
selected ions, which were rendered over the optical image of the
tissue through an imaging software package (Photoshop, version
7, Adobe Systems, San Jose, CA).
Data Processing. The LAESI mass spectra were obtained by

subtracting the electrospray background peaks in the MassLynx
4.1 software (Waters Co., MA). Accurate alignment between the
data sets was obtained by using the lock mass feature on an ion of
known identity, such as the potassiated sucrose ion with m/z
381.0799. Further data processing was performed with the
Origin (Origin 7.0, OriginLab Co., Northampton, MA) software
package on ASCII data files exported from MassLynx. Multi-
variate statistical data analyses, such as PCA and OPLS-DA, were
performed by the Extended Statistics (XS) module that utilizes
the EZinfo software (version 2.0.0.0, Umetrics AB, Sweden)
within the MarkerLynx application manager (Waters Co., MA).
In the statistical analyses, automatic cross validation was utilized
to determine the number of components. Initially, an unsuper-
vised multivariate statistical approach, PCA, was applied to the
raw data from the mass spectrometer to identify the principal
components. To identify potential biomarkers, the data was
further analyzed using the supervised OPLS-DA method, with
Pareto scaling. In Pareto scaling, each variable is divided by the
square root of its standard deviation. The advantage of Pareto
scaling over other scaling techniques is that it enhances the
contribution from medium and small spectral features without
inflating baseline noise or distorting spectral line shapes.41,46

OPLS-DA is an emerging tool for biomarker discovery in
metabolomics.47-49 It is capable of pinpointing variables that
are responsible for discrimination between groups. In this
method, data belonging to different subgroups, e.g., nonpigmen-
ted cells vs pigmented cells, are compared to extract
biomarkers.41,43,44,50 Statistically significant biomarkers are vi-
sualized by the S-plot that presents the relationship between
covariance and correlation within the OPLS-DA results.41,43,51

’RESULTS AND DISCUSSION

Comparative Analysis of Adjacent Cells. In order to assess
the potential degradation of the surroundings of an analyzed cell,
we investigated the cells immediately coordinating the ablation
site. As a model system we used homogeneous tissue regions
consisting of only nonpigmented epidermal cells from A. cepa
bulbs that had been used extensively to study plant cell
structures.52 The potential effect of cell ablation on the metabolic
composition of adjacent cells was evaluated by comparing the
mass spectra from single-cell analyses of adjacent cells (n = 9)
with those of similar cells further away (n = 9). The same number
of laser shots was used for the analysis of each cell. Hexose and
disaccharide ion intensities were found to be normally distributed
among similar epidermal cells in the same layer of the A. cepa tissue.
These experiments showed no significant difference between

the cells surrounding the initial ablation site and similar cells at a
distance. For example, the sodiated hexose (m/z 203) and the
sodiated disaccharide (m/z 365) intensities from a single ablated
cell are 521 and 246, respectively, which are within the margin of
error of the average ion intensities of 456( 187 (RSD 41%) and
215( 93 (RSD 43%), respectively, obtained from the coordinat-
ing cells. The ion intensities from the cells coordinating the
ablation site were similar to the average ion intensities of 582 (
283 (RSD 49%) and 129 ( 57 (RSD 57%), respectively,
measured for single cells at least 8 to 10 cells away from the
original ablation site. This suggested that ablating a cell did not
significantly influence the metabolic analysis of the adjacent cells.
In addition, the physical integrity of cells surrounding the
ablation site can be discerned from optical images.36,38

The epidermal tissue in the purple A. cepa cultivar contains
predominantly nonpigmented cells and a few patches of pigmen-
ted cells. For most cells, the difference in pigmentation observed
by an optical microscope clearly distinguishes the cell popula-
tions belonging to the two phenotypes. Positive-ionmass spectra,
obtained by averaging single-cell LAESI mass spectra for five
pigmented (n = 5) and five nonpigmented (n = 5) cells each, are
shown in Figure 1. The total acquisition time for these spectra
was 100 s. A typical single cell LAESI mass spectrum contained

Figure 1. Positive-ion single cell LAESI mass spectra averaged over
five pigmented cells (top) and five nonpigmented cells (bottom) of the
A. cepa epidermis. The �5 magnification is applicable for both mass
spectra, and the magnification starts at m/z 550.
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over 100 ions, whereas spectra averaged for multiple cells
exhibited over 300 peaks. Approximately 12% of the 300 ions
have been assigned. Some of the ions were sodiated or potas-
siated adducts and for carbohydrates there were a few dimers.
Most of the ions assigned ions, however, corresponded to distinct
metabolites.
A direct comparison between the metabolite composition of

the nonpigmented and pigmented cells in the same tissue had

been reported earlier.36 Compared to the nonpigmented cells,
additional metabolites, such as anthocyanidins, flavonoids, and
their glucosides, were present in the pigmented cells.
Cell-by-Cell Imaging. The robust mass spectrometric signal

from adjacent cells suggested the feasibility of cell-by-cell ima-
ging. LAESI-MS was utilized to perform chemical imaging at
the transition between the pigmented and nonpigmented cells
(see the optical image in Figure 2A). Single cells were used as
voxels to demonstrate the feasibility of molecular imaging by
performing successive LAESI-MS analysis on 36 cells at the
nonpigmented-pigmented boundary. The chemical profile of

Figure 2. (A) Optical image of the studied cell population at the
pigmented to nonpigmented boundary with the analyzed cells outlined.
Cell-by-cell chemical images of the metabolites (B) cyanidin and (C)
sucrose were created by representing the ion intensities obtained from a
cell on a false color scale and coloring the corresponding cells in the
optical microscope image accordingly. The chemical images show that
cyanidin was selectively present in the pigmented cells (n = 20) whereas
it was absent in the nonpigmented cells (n = 16) and sucrose was
uniformly distributed throughout the entire studied cell population.

Figure 3. (A) Score plot of the OPLS-DA model completely separated
the subpopulations of pigmented (n = 20) (purple squares) and
nonpigmented cells (n = 16) (black triangles) in the first predictive
component, tp[1], whereas the variations within the subpopulations was
seen in the orthogonal component, to[2]. All the points fell well within
the Hotelling T2 range with a significance level of p = 0.05 represented
by the ellipse, and no cells weremisclassified. (B) The wings of the S-plot
with the highest correlation and covariance values signify themetabolites
that account for most of the variance between the two subpopulations.
Selected points in the S-plot (solid squares) in comparison with
Table S2 of the Supporting Information clearly indicated that cyanidin
(SN = 1) and quercetin (SN = 2) are characteristic of the pigmented cells.
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each single cell in the small chemical image is correlated by a mass
spectrum enabling us to assess cell-by-cell metabolite distributions.
The cellular distribution of the detected metabolites was

visualized by coloring each analyzed cell in the optical micro-
scope image of the tissue based on a false color scale representing
the intensity of the corresponding ion normalized for the
spectrum of the given cell (see Figure 2B,C). Optical microscopy
indicated the presence of the natural purple pigment, known to
contain cyanidin, in the cells located in the top portion of the
tissue (see Figure 2A). A good correlation between the cellular
distribution of the protonated cyanidin ion and the pigmented
cells is apparent in Figure 2B. Similarly, quercetin, a flavonoid,
has also been found predominantly in the pigmented cells (see
Figure S1a in the Supporting Information). Primary metabolites,
such as sucrose, were distributed uniformly throughout all the
studied cells with slightly higher intensities in the nonpigmented
cells (see Figure 2C). Another metabolite alliin, a derivative of
the amino acid cysteine and the precursor of allicin and other
sulfur compounds responsible for the smell of onions, seemed to
be highly concentrated in two of the studied cells with much
lower or no alliin content in other cells (see Figure S1b in the
Supporting Information). The small scale cell-by-cell chemical
imaging presented here demonstrates the feasibility of using
LAESI-MS for studying the distribution of metabolites, lipids,
and other compounds. These results also point to the possibility
to identify distinct subpopulations within seemingly similar sets
of cells.
Cell Population Analysis. Multivariate statistical analysis

methods, such as PCA and OPLS-DA, had been successful in
the evaluation of complex metabolomics data.40,41 In this study
OPLS-DA was utilized to identify metabolites responsible for
most of the variance between LAESI mass spectra of visually
distinguishable phenotypes, e.g., nonpigmented and pigmented
epidermal cells of A. cepa. In the score plot of the OPLS-DA
model, presented in Figure 3A, the subpopulations of pigmented
and nonpigmented cells were completely separated in the first
predictive component, tp[1], whereas the orthogonal compo-
nent, to[2], described the variation within the subpopulations.
The analysis of single cells, represented by the points in this plot,
fall well within the Hotelling T2 range with a significance level of
p= 0.05 (see the ellipse in Figure 3A), and no cells aremisclassified.
The S-plot is a scatter plot that visualizes the covariance and

correlation loading profiles based on the predictive component,
tp[1], of the OPLS-DA model. In the S-plot, the y-axis denotes
reliability of metabolite ions that contribute to the difference in
the signal between the cell populations, i.e., the correlation, and
the x-axis denotes the contribution magnitude of the ions to the
cell population difference, i.e., the covariance. The labels in the
S-plot describe which cell populations correspond to the positive
and the negative axes. For example in Figure 3B, the correlation
of 1 corresponds to nonpigmented cells, whereas the correlation
of -1 represents pigmented cells. The wings of the S-plot with
the highest correlation and covariance values signify the meta-
bolites that account for most of the variance between the two
subpopulations. Conversely, the metabolites represented by
points in the center of the S-plot do not significantly contribute
to the variance between the two subpopulations. In Figure 3B,
most of the metabolites are found close to the center, indicating
that the epidermal cell subpopulations are very similar in their
metabolite composition.
With the wings of the S-plot in Figure 3B looked at, the cyanidin

and quercetin ions (with serial numbers SN = 1 and SN = 2,

respectively) were identified as the metabolites most closely
associated with the pigmented cell subpopulation. This is con-
sistent with earlier results on single A. cepa cells.36 In contrast,
the potassiated hexose (SN = 11) and potassiated disaccharide
(SN = 9), at m/z 219 and 381, respectively, show lower
covariance and correlation values indicating that these metabo-
lites do not efficiently differentiate between the two subpopula-
tions. Indeed, although their ion intensities are slightly higher in
the nonpigmented cells, they are also present in the pigmented
ones. Among the 12 metabolite ions found in the wings of the
S-plot (see Table S2 in the Supporting Information), cyanidin
and quercetin intensities exhibit the strongest difference in the

Figure 4. (A) Intensity distribution of cyanidin in the total cell
population (n = 36) exhibits two or three maxima with the nonpig-
mented (n = 16) (solid black) and pigmented (n = 20) (shaded purple)
cell subpopulations responsible for the low and high intensity modes,
respectively. (B) The ion intensity distribution of hexose showed a single
maximum with slightly higher intensity values for the nonpigmented
(solid black) subpopulation. The solid green and dashed orange lines
represent the Gaussian fits to the total cell population and the
nonpigmented subpopulation, respectively.



2952 dx.doi.org/10.1021/ac102958x |Anal. Chem. 2011, 83, 2947–2955

Analytical Chemistry ARTICLE

spectra of the two cell subpopulations. The metabolites marked
by an asterisk in Table S2 are confirmed by tandem MS
measurements. Numerous points are found in the center of the
S-plot indicating that many of the metabolite ions are present in
the two subpopulation spectra with similar abundances. In such
cases, relatively few metabolites can be selected as biomarker
candidates.
Comparison of Highly Dissimilar Cells. To test the OPLS-

DA analysis for highly dissimilar cell populations, LAESI mass
spectra were compared for nonpigmented A. cepa epidermal cells
and human buccal mucosa epithelial cells (cheek cells). Themass
spectra of buccal cells (see Figure S2a in the Supporting
Information) showed the presence of small metabolites and
lipids (see Table S3 in the Supporting Information for a few
selected assignments). The typical LAESI mass spectrum of
buccal epithelial cells significantly differs from the spectrum of
A. cepa epidermal cells.
To identify the metabolites that account for the variance

between the two cell populations, OPLS-DA was carried out
on the corresponding LAESI spectra. Compared to the S-plot
for the mildly dissimilar epidermal cell phenotypes shown in
Figure 3B, the S-plot for these highly dissimilar cells was much
more polarized. The large differences between these cells re-
sulted in an expanded correlation range covering almost the
entire-1 to 1 domain, and numerous metabolites were clustered
close to these extremum values with fewer species represented in
the middle (see Figure S2b in the Supporting Information). This
indicates that, in case of highly dissimilar cells, more metabolites
correlate strongly with their respective subpopulations and have
the potential to become biomarker candidates.
Metabolite Concentration Distributions over Cell Popula-

tions. Assuming that the relative ion intensities from single cells
are proportional to the corresponding metabolite concentra-
tions, the cellular heterogeneity within a population can be
quantified. Frequency distributions for significant ions, selected
by using the S-plot, can be constructed to approximate the
probability density of finding cells with particular metabolite
concentrations. In a homogeneous cell population, the density
function is typically a Gaussian, whereas in heterogeneous
populations, distributions with long tails or bimodal distributions
are observed.
An example for the latter is demonstrated in Figure 4A. The

relative ion intensities for the cyanidin ions at m/z 287 in the
studied A. cepa cell population were binned, and the correspond-
ing cell counts were plotted. The resulting histogram showed a
bi- or perhaps trimodal distribution indicating the strongest
peaks at 0%, i.e., with the cyanidin signal below the noise level,
and at 100%, representing the cells with a cyanidin base peak. As
in this case we can visually distinguish the nonpigmented and the
pigmented phenotypes, and their contribution to the overall
distribution can be separated. Figure 4A shows the nonpigmen-
ted cell counts in solid black, whereas the pigmented cells are
represented in patterned purple. The figure clearly demonstrates
that the two subpopulations segregate according to their cyanidin
concentration, with little overlap. Indeed, the secondary meta-
bolite cyanidin is known to be primarily present in the pigmented
cells (see Figure 2B). When the histogram is looked at, it is also
apparent that measuring the average cyanidin concentration for
this cell population would be misleading. On the basis of this
limited data, it is unclear if the weaker maximum in the center of
the histogram has physiological significance or is it the result of
natural or signal fluctuations.

In contrast, the relative ion intensities of the primary meta-
bolite hexose showed a broad distribution in the studied cell
population with a single maximum. Figure 4B presents the
corresponding histogram for the total cell population with the
contribution of the two subpopulations indicated similar to
Figure 4A. The solid green line represents the Gaussian fit to
the total population with the center at 42 ( 2% relative hexose
ion abundance and a width of ∼23%. A similar fit for the
nonpigmented subpopulation indicates a slight shift to 52 (
5% with a slightly higher width of ∼30%. Indeed, the hexose
content of the two subpopulations is hardly distinguishable. The
more or less uniform presence of hexoses in all the cells is

Figure 5. (A) Positive-ion LAESI mass spectra from n = 6 to 8 oil gland
cells (pooled from the ablation of the center of two glands) of a C.
aurantium leaf (red trace on top) and n = 6 to 8 cells from the leaf away
from the gland (pooled from two ablation spots) (black trace in the
bottom). The inset shows a microscope image of an oil gland with the
ablation mark (scale bar is 50 μm). The ablated spot is ∼30 μm
in diameter. (B) S-plot produced by OPLS-DA of the spectra showed
that many metabolites strongly correlated with either the oil gland cells
(n = ∼25) or cells in the leaf away from the gland (n = ∼25). The 10
metabolites with serial numbers (SN) (solid squares) indicated in the
figure are identified in Table S4 of the Supporting Information.
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expected because they, as primary metabolites, are necessary for
their functioning irrespective of the phenotype.
Biomarker Candidates in Oil Glands. Citrus leaves contain

oil glands that synthesize, secrete, and store terpenoid oils.53,54

These organic volatiles are part of the plant defense mechanisms
against herbivores. In the young leaves of C. aurantium, the
immature glands are approximately 50 μm in size and their
centers contain large achlorophyllous polyhedral cells (see the
inset of Figure 5A) with∼15 and∼10 μm for the long and short
axes, respectively. Within the gland they are surrounded by
somewhat smaller flattened cells. Analysis of 100 μm spots would
result in an average mass spectrum from the mixture of the oil
gland cells, the surrounding flattened cells, and the regular
epidermal cells adjacent to the gland. Although analysis of a
single gland cell remains a challenge due to sensitivity limitations,
LAESI-MS of the central cluster within a∼30 μm ablation spot is
feasible. This enables the sampling and analysis of only 3 or 4
achlorophyllous cells within an oil gland.
In order to find chemical species that reliably distinguish the

gland cells, local LAESI-MS analysis of n = 6 to 8 cells (spectra
pooled from the ablation of two glands) in an oil gland of a
C. aurantium leaf and n = 6 to 8 cells from the leaf away from the
gland (spectra pooled from two ablation spots) was conducted.
Figure 5A shows a significant difference in the obtained mass
spectra. Some of the distinctive groups of biomolecules detected
in the oil gland appeared to belong to terpenes and terpenoids. In
contrast, LAESI-MS analysis of the epidermal cells away from the
gland revealed the presence of flavonoids and common primary
metabolites. Considering the low incidence of quasimolecular
and cluster ions, the over 550 peaks from the spectra for the two
cell types correspond to more than 400 hundred different
metabolites. Some examples are listed in Table S4 of the
Supporting Information, but to identify all of them would require
an extraordinary amount of work. In order to concentrate our
efforts on metabolites that account for most of the variance
between the spectra from in and outside the glands, OPLS-DA
analysis has been performed on the spectra and the obtained
S-plot is displayed in Figure 5B.
Although the two cell populations reside in the same tissue, the

extreme negative and positive correlation values for some
metabolites approaching -1 for the oil gland and 1 for the cells
away from the glands indicate that clear distinction can be made
according to their localization. Identifying 10 ions in the S-plot
with high correlation and covariance values (see the points with
SNs in Figure 5B) enabled us to focus our efforts on the
statisticallymost relevantmetabolites. The corresponding assign-
ments are listed in Table S4 of the Supporting Information. The
metabolites marked by an asterisk in Table S2 are confirmed by
tandem MS measurements. Four metabolites related to terpe-
noids with high negative correlation values are found exclusively
in the oil gland cells. Similarly, six flavonoids with high positive
correlation were absent in the oil gland cells and present in the
cells away from the glands.
Further analysis of the spectra from the oil gland cells revealed

the presence of diverse chemical species tentatively identified as
terpenes and modified terpenoids, including hemiterpenes,
monoterpenes, and diterpenes. The large chemical diversity of
these compounds and the amount of work it takes to fully
characterize a species highlights the importance of the OPLS-
DA-based method that enables us to pinpoint the metabolites
that contribute to most of the variance between the LAESI-MS
spectra of different subpopulations. These compounds can be

viewed as candidates for biomarkers, but their verification
requires extensive testing, including biological assays.

’CONCLUSIONS

In this article we demonstrated the feasibility of using a small
population of single cells as voxels in a LAESI-MS imaging
experiment. On the basis of profiling hexose and disaccharide ion
intensities, we found that the microablation of a cell using a
sharpened optical fiber does not significantly alter the metabolite
composition of the adjacent cells. For secondary metabolites
associated with pigmentation, the chemical contrast observed in
the LAESI-MS images followed the visual contrast observed by
optical microscopy. Producing images built from cellular voxels
promises additional insight into cellular transport, localization,
and signaling in biological tissues.

At present, the main limitations of cell-by-cell imaging are
related to the size and number of cells used in these experiments.
Because of instrument sensitivity limitations, the dimensions
of the currently accessible smallest area are∼30 μm in diameter.
Although many plant cells have larger dimensions, they often
exhibit high aspect ratios, e.g., the flattened cells in this study.
Currently the minimum size requirement is to be able to ablate a
circular spot of 30 μm in diameter to a depth of ∼30 μm that
remains entirely within a single cell. As the efficiency of the
LAESI interface improves, further reduction in the dimensions of
the studied cells is expected. In particular, various cells of vertebrates
with typical dimensions of ∼10 μm may become possible.

The number of cells in the demonstrated images is very small.
This obvious limitation is set by the current need to manually
locate each cell targeted for analysis within the irregular cellular
pattern of the tissue. A possible solution for this problem can be
based on a computerized gridding algorithm, based on recogniz-
ing the cells as objects in the optical microscope image of the
tissue, and generating a grid of ablation points that matches the
cellular pattern. Feeding these coordinates to the motorized
translation stage of the sample holder would eliminate the need
to manually address the ablated cells and enable the construction
of images with larger voxel counts. Because of the need to retain
the water content in the sample for LAESI analysis, cell-by-cell
imaging of samples with a large number of voxels requires the
implementation of an environmental chamber for humidity
control to prevent drying.

Local LAESI-MS analysis of ∼30 μm diameter voxels also
enables the investigation of metabolites and lipids in small cell
populations. The actual size of the population depends on the
average cell size. For example in the case of larger plant cells, very
small populations in the 1 < n < 50 size range can be studied,
whereas in the case of smaller animal cells the population size can
fall in the 10 < n < 5000 range. Cellular heterogeneity in larger
populations can be explored by comparing the analyzed cells in a
tissue voxel-by-voxel or by comparing a number of small cell
populations sorted by flow cytometry.

The large volume of data produced by LAESI-MS, i.e., a
spectrum for every cell or small cell population with over 300
peaks per spectrum, makes it tedious to identify every metabolite
in the sample. Many times, however, this is not the objective of
the analysis and in these cases assignment of a much smaller
subset of peaks is sufficient. For example, in the search for
biomarkers, salient chemical species are sought by comparing the
metabolite content of two different regions in a tissue (e.g., a
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lesion with the surrounding unaffected areas) or two sets of small
cell populations (e.g., a drug treated and a control).

We demonstrated the utility of OPLS-DA, a multivariate data
analysis tool, for the selection of a small number of metabolites
that accounted for most of the variance in LAESI-MS data of
different cell subpopulations. On the basis of the preexisting
information on the cells involved (e.g., nonpigmented vs pig-
mented epidermal cells), the results of the OPLS-DA analysis
were easily verified. Finding the statistically significant differ-
ences in metabolite content, however, does not necessarily mean
the discovery of true biomarkers. For the verification of each of
the identified candidates, biological assays are needed. Guided by
OPLS-DA analysis of LAESI-MS data, however, dramatically
reduces the number of detected metabolites that needs structural
identification.
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Table S1. Typical instrumental parameters for the cell-by-cell LAESI-MS imaging experiment. 

Parameter  Value 

Electrospray emitter Stainless steel; i.d., 50 μm  

Electrospray voltage  2.9 to 3.0 kV 

Solution supply rate  200 nL/min 

Solvent composition 50% (v/v) aqueous methanol with 0.1% (v/v) acetic acid  

Laser wavelength and pulse width  2940 µm and 5ns 

Laser pulse repetition rate  10 Hz 

Laser pulse energy before coupling to fiber 0.55±0.03 mJ 

Optical fiber GeO2-based glass fiber, 450 µm core diameter 

Coupling lens for optical fiber  planoconvex CaF2 lens with 50.0 mm focal length 

MS orifice temperature 80 °C 

MS acquisition mode Positive ions 

MS orifice-to-emitter tip distance  12 mm 

MS orifice axis-to-sample surface distance 12 mm 
Dwell time between pixels 60 s 

 

 

 

 

 

Table S2. Analyzing the single cell LAESI-MS spectra of pigmented and colorless cells with OPLS-DA 

identified 7 metabolites as candidates for biomarkers of the pigmented cell type. Based on the S-plot in 

Figure 3b, the metabolites marked with serial numbers (SN) were responsible for most of the variance 

between pigmented (purple background) and colorless (white background) cell spectra. 

 

SN Metabolite Ion m/z 

1 cyanidin C15H11O6
+
 287.0551 

2 quercetin
*
 C15H10O7  (+H

+
) 303.0498 

3 cyanidin malonyl glucoside
*
 C24H23O14

+
 535.1110 

4 quercetin glucoside
*
 C21H20O12 (+H

+
) 465.1027 

5 quercetin diglucoside
*
 C27H30O17 (+Na

+
) 649.1414 

6 quercetin diglucoside
*
 C27H30O17 (+H

+
) 627.1561 

7 disaccharide C12H22O11 (+H2O+K
+
+H

+
) 200.0439 

8 hexose dimer (C6H12O6)2 (+Na
+
) 383.1135 

9 disaccharide C12H22O11 (+K
+
) 381.0799 

10 hexose C6H12O6 (+Na
+
) 203.0560 

11 hexose C6H12O6 (+K
+
) 219.0285 

*
Identification was aided by tandem MS.  
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Table S3. Analyzing the LAESI-MS spectra of highly dissimilar buccal epithelial and A. cepa epidermal 

cells selected by OPLS-DA identified 10 metabolites that, according to the S-plot in Figure S2b, were 

responsible for most of the variance between the spectra of buccal epithelial (SN = 1, 2, 3) (white 

background) and A. cepa cells (SN > 3) (yellow background). 

 

SN Metabolites Ion m/z 

1 DG (36:4) C39H68O5 (+H
+
) 617.5155 

2 MG (18:2) C21H38O4 (+H
+
) 355.2840 

3 DG (33:3) C36H64O5 (+Na
+
) 599.4783 

4 oligosaccharide (5 hexose units)  C30H52O26 (+K
+
+H

+
) 434.1201 

5 disaccharide (2 hexose units) C12H22O11 (+H2O+K
+
+H

+
) 200.0448 

6 oligosaccharide (6 hexose units)  C36H62O31 (+H2O+K
+
+H

+
) 524.1516 

7 oligosaccharide (5 hexose units)  C30H52O26 (+H2O+K
+
+H

+
) 443.1234 

8 disaccharide (2 hexose units) C12H22O11 (+K
+
) 381.0773 

9 trisaccharide (3 hexose units) C18H32O16 (+K
+
) 543.1285 

10 hexose C6H12O6 (+K
+
) 219.0228 

 

 

Table S4. Biomarker candidate metabolites identified by OPLS-DA analysis of spectra produced by 

LAESI-MS from small cell populations in an oil gland of a C. aurantium leaf (SN = 1, 2, 3, 4) (white 

background) and in tissue away from the gland (SN > 4) (green background). Based on the S-plot in 

Figure 5b, they are responsible for most of the variance between the spectra of cells in the oil gland and 

tissue away from the oil gland. 

 

SN Metabolite Ion m/z 

1 monoterpene
*
 C10H16 (+H

+
) 137.1330 

2 monoterpene fragment C6H9
+
 81.0708 

3 citral and/or pulegone C10H16O (+H
+
) 153.1308 

4 cymene C10H14 (+H
+
) 135.1180 

5 hesperetin C16H14O6 (+H
+
) 303.0780 

6 rhamnocitrin rhamninoside C34H42O19 (+H
+
) 755.2497 

7 peonidin glucoside C22H23O11
+
 463.1180 

8 methylkaempferol
*
 C16H13O6

+
 301.0721 

9 kaempferol rhamnoside glucoside
*
 C27H30O15  (+H

+
) 595.1631 

10 diosmin or cytisoside-O-glucoside C28H32O15 (+H
+
) 609.1827 

*
Identification was aided by tandem MS.  
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Figure S1. (a) Optical microscope image of the A. cepa tissue at a transition region between colorless 

and purple cells. Cell-by-cell chemical images of the metabolites (b) quercetin, and (c) alliin were 

created by representing the ion intensities obtained from a cell on a false color scale and coloring the 

corresponding cells in the microscope image accordingly.  

 
(a) 

 
(b) 
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Figure S2. (a) Positive-ion LAESI mass spectra of approximately six human buccal epithelial cells (n = 

6) showed the presence of small metabolites and lipids. (b) Comparison of LAESI mass spectra of 

highly dissimilar buccal (n = 18) and A. cepa (n = 9) cell populations by OPLS-DA resulted in an S-plot 

that spanned the entire -1 to 1 correlation range. Metabolites with high correlation and covariance values 

were exclusively present in spectra of the two cell types. Some of them (solid squares) were identified 

by serial numbers and listed in Table S2.  

 

(a) 

 

(b) 
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